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Summary. A valence bond approach based on nonorthogonal orbitals in a 
biorthogonal representation is presented. While the scheme suffers from the lack 
of a variational bound on the energy functional, it is shown that with a suitable 
optimization of the orbitals reliable molecular wavefunctions can be obtained. A 
review of the background theory is given emphasizing the similarity of this 
approach to the familiar spin-free unitary group formulation of quantum chem- 
istry. The details of the computer implementation are discussed and the method 
is illustrated with model calculations on HF, H20 and F202. 
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1. Introduction 

The rivalry between the molecular orbital (MO) and valence bond (VB) descrip- 
tions of electronic structure is an old one. At the qualitative level, both 
approaches provide insights into particular areas of chemistry. For example, the 
MO approach has historically been the standard model for discussing molecular 
spectra, while many VB concepts (such as hybridization, electron pair bonds etc) 
have provided an enduring basis for discussions of bonding and structure. 
However, at the quantitative level the popularity of MO approaches has over- 
shadowed that of VB schemes. The reasons for the acceptance of MO methods 
are well known and clearly dominated by considerations of computer implemen- 
tation. This has led ultimately to a body of quantitative data which allows the 
MO theory to be tested and validated. 

The methodology associated with the VB theory is very much more demand- 
ing from a computational point of view and has worked against the development 
of 'black-box' approaches such as are commonplace among MO based models of 
electronic structure. In spite of this, a number of groups have pursued and 
developed ab initio VB schemes and applied them with great success to a variety 
of chemical problems. In particular the generalized valence bond (GVB) method 
of Goddard and coworkers [ 1- 5] has found very wide application, albeit in the 
so-called "strong orthogonality-perfect-pairing" (SO-PP) approximation. In the 
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SO-PP scheme each doubly occupied orbital of a single determinant Hartree- 
Fock wavefunction is replaced by two distinct orbitals which are allowed to 
overlap with each other but remain orthogonal to all other orbitals; this defines 
the SO condition. The PP condition then imposes a further restriction by 
including only a single spin-coupling scheme for the electrons. The SO-PP 
restrictions lead to dramatic simplifications in the calculations, enabling the 
GVB-SO-PP scheme to be applied to quite large systems. 

The classical VB theory, in which the wavefunction of a molecule is con- 
structed from the wavefunctions of the constituent atoms has been discussed by 
Simonetta et al. [6]. A displeasing facet of the classical VB approach is the need 
to include vast numbers of ionic configurations in the molecular wavefunction in 
order to achieve quantitative accuracy; an achievement which is won at the cost 
of any simple interpretation of the resulting wavefunction. This problem was first 
addressed by Coulson and Fischer [7], who showed that the ionic configurations 
could be eliminated by allowing the orbitals to deform away from their atomic 
forms. The Coulson-Fischer approach was generalized into the spin-coupled 
valence bond (SCVB) theory by Gerratt [8]. In SCVB all possible spin-pairings 
associated with a single spatial configuration of orbitals are optimized simulta- 
neously with the orbitals. Subsequent developments in methodology [9, 10] led to 
a variety of applications [11-13] of SCVB which showed it to be competitive 
with the complete active space self consistent field (CASSCF) procedures of MO 
theory, while retaining the all important interpretability associated with the best 
VB wavefunctions through the use of a single spatial configuration. More 
recently, McWeeny [14] has put forward a spin-free form of classical VB theory 
based on overlap enhanced atomic orbitals. This scheme appears to lie some- 
where between the approach of Simonetta et al. [6] and the SCVB in that only 
a small number of classical VB structures are included in the wavefunction and 
the orbitals are mixed according to the strength of their overlaps [15, 16]. 
Finally, the work of Gallup and coworkers should be mentioned in the context 
of classical VB theory, a thorough review of which may be found in [17]. 

From the previous discussion, it would seem that the VB theory is well 
served by practitioners. Nevertheless, VB calculations beyond the SO-PP type 
approximations are still very demanding for many-electron systems. The pur- 
pose of this work is to suggest an approach which is capable of eliminating 
some of the bottlenecks associated with traditional VB methods but does not 
require SO-PP type restrictions. 

2. Theory 

The main difficulty in VB calculations arises from the use of nonorthogonal 
orbitals in constructing many-electron wavefunctions. This leads to the well 
known N! dependence of matrix elements (where N is the number of electrons). 
A solution to this problem was first suggested by Moshinsky and Seligman [18], 
who considered the use of nonorthogonal orbitals in the second quantization 
formalism. By defining creation and annihilation operators for nonorthogonal 
orbitals, the usual anticommutation relations are modified to: 

{ai,, aj~} = 0 (la) 

{ai + , a f  } = 0 (lb) 

{a i  + , aj,  } = 6 ~ S  o- (lc) 
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where ai + and a;~ denote creation and annihilation operators, respectively. In Eq. 
(1), o- and r are spin labels corresponding to the orbitals i and j, and S~ is the 
spatial overlap integral between i and j: 

= .t'@(1)*~bj(1 ) dr 1 = (i [j) (2) Sij 

Provided that the orbitals are linearly independent, the inverse of the overlap 
matrix ( T =  S -1) may be found. It is then possible to define another linearly 
independent orbital basis {~}, which is said to be dual or biorthogonal to the 
primary orbital basis {~}, through the transformation: 

= ~ T  = ~bS 1 (3a) 

f )  = Z Ik)Tk~ (3b) 
k 

In what follows all quantities expressed in the dual basis will be denoted by a 
tilde. The transformation in Eq. (3) bestows on the primary and dual bases the 
property of biorthogonality: 

<r I j> = a0 (4) 

The same transformation may be applied to the Fock space operators ai+~ and a~ 
to define dual operators a'+~ and ~ .  However, it is only necessary to consider 
dual annihilation operators, defined by: 

k 

which leads to the modified anticommutation relations: 

{a~o, ai~ } = 0 (6a) 

{ai + , aj + } = 0 (65) 

{a~ + , ~j~ } = 6,,~6 U (6c) 

which are equivalent to those for orthogonal orbitals. The conventional molecu- 
lar hamiltonian can now be expressed as: 

/ t = Z Z  (Ta[f~lJT)a~iJ~ + ½ ~  Z (TaJT[~Qle)ai+~ak+g~t~g~J~ (7) 
ij o-v: ijkl erzOe 

where /~ contains the usual one-electron operators: 

] ~ ( i )  = 1 2 nuclei  Z A  
- ~ V , -  ~ - -  (8a) 

A r iA  

and 

@[]~l)=f~)i(1)*~(2)*l (°j(1)¢l(2)drldr2fa(1)'Q(1)d°olf 
(8c) 

where r denotes the spatial variable and co the spin variable, and the integrals 
over the one- and two-electron operators have the dual basis to the left and the 
primary basis to the right of the operator. 
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To make the connection with the familiar unitary group form of the 
hamiltonian in Eq. (7), it is necessary to consider the operators: 

E U = ai + 8j~ (9) 

which satisfy the same commutation relations as the unitary group operators 
[19]" 

but do not possess a hermitian condition and so: 

hence the group generated by/~¢ is GL(2n) rather than U(2n) (where n is the 
number of orbitals). To obtain operators for subgroups of GL(2n) it is necessary 
to contract over the orbital or spin indices in the usual manner [20] to obtain: 

(Eo) t # ~j, (12b) 

/ ~  = Z / ~ ~  (12c) 
i 

(/~°¢)* = / ~ °  (12d) 

The condition in Eq. (12d) is a consequence of the summation over all orbital 
indices in Eq. (12c). The operators E U and E °¢ now satisfy the following 
commutation relations: 

lEo., E~,I = ~Sjk Ei, -- all/~/cj- (13a) 

[ / ~ , / ~ ]  = 6¢Q/~ - c~o/~ (13b) 

[Eo., E~q = 0 (13c) 

and with conditions (12b), (12d) and (13c) show that they are generators of the 
chain of groups: 

GL( 2n) ~ GL(n) ® U(2) (14) 

Hence the spin-free hamiltonian in Eq. (7) may be written as: 

ij i jkl  

in complete analogy with the case for orthogonal orbitals, except that the U(n) 
generators have been replaced with GL(n) generators. 

These ideas are not new. Following the original work of Moshinsky and 
Seligman [18], Cantu et al. [21] discussed the use of this type of formalism in the 
VB context using a Riimer-Weyl basis of states expressed in terms of Bose 
creation operators [22, 23]. Payne [24] has also discussed the use of dual bases in 
configuration interaction (C1) calculations, paying special attention to the formu- 
lation of a variational principle for biorthogonal basis sets. However, apart from 
the initial investigation of this formalism with the H3 surface by Moshinsky and 
Seligman [18], the only applications to molecules appear to be those of Norbeck 
and McWeeny [25]. The main disadvantage of using the hamiltonian in Eq. (15) 
with many-electron bra vectors built from {O} and the ket vectors built from 
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{~} is that it leads to an unsymmetric eigenvalue problem with no variational 
bound. The variational property can be restored by permitting full C1, in which 
case the space spanned by the many-electron functions built from the dual basis 
is equivalent to that spanned by those built from the primary basis [25]. Since 
full C1 is not a realistic goal for general problems, the course chosen was to take 
a small number of configurations or just one (perfect-pairing approximation) 
and optimize the orbitals. Given a suitable choice of reference configurations it 
was assumed that optimization of the orbitals should lead to a sufficiently good 
wavefunction such that the lack of a variational bound would be of little 
consequence. The technicalities of the orbital optimization process are outlined 
in the next section. 

3. Implementation 

The choice of structures to include in a VB calculation is a central consideration. 
The interest here centres on a suitable representation of the so-called 'covalent' 
structures whose spin factors couple electron pairs into singlets and in general 
are taken to correspond to chemical bonds between atoms. These are usually 
represented by the Rfimer-Weyl basis and [26] contains a thorough discussion 
of a number of schemes for obtaining this type of basis. More recently, Paldus 
[27] has extended his Clifford algebra unitary group approach (CAUGA) to 
facilitate the evaluation of matrix elements between R/imer-Weyl states. In 
evaluating matrix elements over the hamiltonian in Eq. (15), the bra vectors will 
be taken to be Riimer-Weyl states built from the dual basis {~} defined in Eq. 
(3), while the ket vectors will be built from the primary orbital basis {~b}. Hence: 

H~L = ( ~K [/][ ~gL ) (16a) 

where 

~g/~ -- s~'[~bf(rl)~bzL(r2).., q~L(rN)OL((DI (.02... (ON) ] (16b) 

~K = d[q~(rl)q~f(r2) • • • d~fv(rx)OK(COlCO2... ~Ou)] (16c) 

In Eq. (16b,c) d is the usual antisymmetrizer and O is an appropriate spin 
function. This procedure yields the tremendous simplification that the matrix 
elements, HyL, can be evaluated as if they were between orthogonal orbitals, 
thus avoiding the familiar N! problem. As has already been stated theprice for 
doing this is that HgL ~HiI¢  and consequently the eigenvalues of H are not 
variationally bound. 

In implementing this procedure the techniques to be found in [27] may be 
used or alternatively the older schemes based on superposition diagrams [28-30]. 
The latter schemes appear to perform well compared with the newer approaches 
as the number of electrons becomes large. All matrix elements in the current 
investigation were obtained using superposition diagrams. Having obtained the 
matrix representation of the hamiltonian over suitable Riimer-Weyl states, the 
non-hermitian generalized eigenvalue problem: 

HC = SCE (17) 

must be solved. This can be done using the procedure to be found in [31] or the 
EISPACK routine RGG. In general, only the lowest eigenvalue and eigenvector 
are required, these can be obtained using a modification of Nesbet's algorithm 
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[32] or a modified Davidson procedure [33]. The lowest right-eigenvector of Eq. 
(17) yields the VB wavefunction T0: 

~JO = ~ CKTK (18) 
K 

To optimize the orbitals {~b} from which T 0 is built, it is useful to adopt a 
'super-Cl' (SC1) approach in the manner of Grein and Chang [34-36]. This type 
of procedure was first used in the VB context by van Lenthe and Balint-Kurti in 
their VBSCF method [37]. The great advantage of SC1 methods is that they are 
very easy to implement and have a broad radius of convergence. However, they 
do not possess the rapid convergence associated with full Newton-Raphson type 
methods. Also the number of matrix elements can become very large making SC1 
a less attractive proposition. Van Lenthe et al. [38] have discussed these matters 
in some detail and have suggested hybrid optimization schemes which provide a 
balance between the number of iterative cycles and the cost of a cycle. 

To motivate the SC1 scheme, consider the transformation of an orbital qS~: 

cb ~ = ~,  + Y', aijc~j (19) 
J 

this induces a transformation in T 0 which to first order may be written [34]" 

T; = To + 2 aW,  (20) 
U 

where T;j is a state generated from T0 by replacement of an electron in orbital 
i by an electron in orbital j. This type of single replacement gives rise to the SC1 
wavefunction: 

Tscl = C07% + ~ Co.T  ~ (21) 
U 

from which the orbital transformation: 

(% 
~b; = q5 i + ~ \C0/qSj (22) 

can be obtained. After transformation, Tsc~ is formed again using the trans- 
formed orbitals {q~'} by solving the appropriate secular problem, and the process 
is repeated until the C o. in Eq. (21) vanish. Some care must be exercised in 
applying this type of procedure to the biorthogonal bases. Only the primary 
basis is transformed according to Eq. (22), since the dual basis is uniquely 
specified once the primary basis is known. At convergence: 

(tfi~]H[To) = 0 (23a) 

but 

<~o]HiTo> # 0 (23b) 

By transforming the primary basis only, the projection of tfi~y is removed from T 0 
(equivalently the dual basis could be transformed to eliminate the projection of 
T o from To). Denoting the space containing the reference VB configurations by 
{0} and that of the SC1 configurations by {Q}, at convergence the SC1 secular 
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problem will take the form: 

Clearly the left-eigenvector of Eq. (24) will not have a zero contribution in the 
Q space, but because of Eq. (23a) will still have zero contribution to E in Eq. 
(24). 

The only other point that needs to be addressed is the transformation of the 
one- and two-electron integrals to the dual basis: 

<i~f~[j> = Z Tai<aflj> (25a) 
a 

(t}' I~./) = Z Ta'Tbk(aJ I bl) (25b) 
ab 

it should be noted that the usual eight-fold symmetry associated with two- 
electron integrals (when evaluated over real orbitals) is lost. There is now only 
a two-fold symmetry since: 

I fz) (5 [ 

l rk) 

(26) 

4. Applications 

The applications reported here were chosen to expose the properties of the 
biorthogonal VB (BOVB) wavefunctions by comparison with established meth- 
ods rather than to present new data. All one- and two-electron integrals were 
evaluated using the standard procedures implemented in GAUSSIAN 90 [39] 
and passed to the BOVB program. The CASSCF calculations were also per- 
formed using GAUSSIAN 90. 

4.1. Hydrogen fluoride 

The wavefunction for hydrogen fluoride is taken to be: 

(27) 

where the orbitals (~1--~4 correspond to a core of doubly occupied pairs on 
fluorine and orbitals q55 and q56 describe the H - F  bond. Since the core orbitals 
are given a restricted description, i.e. the spatial parts of c~ and/~ spin orbitals are 
the same, there is no restriction imposed by requiring orbitals ~bl-gb4 to be 
orthogonal to ~b 5 and gb 6 [40]. In addition all virtual orbitals are chosen to be 
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Table 1. Total energies (au) obtained with the 6-31G* basis for H-F, R~ = 0.9308 

E(CASSCF) E ( B O V B )  E(CASSCF) -E(BOVB) 
R e --100.0272040 -100.0266037 0.0006003 
1.5R e --99.9462886 -99.9459837 0.0003049 
2R~ --99.8851918 -99.8851608 0.0000310 

orthogonal to all occupied orbitals. This is achieved by symmetrically orthogo- 
nalizing the core and virtual orbitals within each set and then applying the 
following projections: valence orbitals (t, u, v, w) are orthogonalized to the core 
orbitals (i,j, k, l) according to: 

core 

It') = It) -- ~ li)Sit (28a) 
i 

and virtual orbitals (a, b, c, d) are orthogonalized to the core and valence orbitals 
by: 

core valence 

[a') = l a ) -  ~ l i ) S i a -  Z [t)Tt,  S,a (28b) 
i tu  

the occurrence of the inverse of the overlap matrix in the last term of Eq. (28b) 
arises from the nonorthogonality of the valence orbitals [17]. With this core/ 
valence partitioning of the orbital space, H F can be described by the single 
covalent spin function (perfect-pairing approximation) shown in Eq. (27). 

Table 1 shows the results obtained with the 6-31G* [41] basis at the 
equilibrium bond length R e (obtained from a CASSCF optimization using the 
same core/valence partition as in Eq. (27), and also at 1.5R e and 2R e. The BOVB 
results were obtained by considering all possible rotations, i.e. core/valence, 
core/virtual, valence/valence and valence/virtual replacements in the SC1 expan- 
sion. Two important results emerge from Table 1. First of all, the BOVB results, 
with optimal orbitals, do not violate the variation principle and in addition the 
difference between the CASSCF and BOVB energies is extremely small, indicat- 
ing that some confidence may be put in the BOVB scheme outlined above. 

4.2. Water molecule 

The water molecule contains 10 electrons, 6 of which constitute lone pairs on 
oxygen and are considered to provide the core, while the remaining 4 electrons 
make up the two O - H  bonds. Again the molecule was optimized at the CASSCF 
level using the 6-31G* basis with the same partition of core/valence orbitals as 
in the BOVB wavefunction: 

~JH20 = ~ [ ~ 2 ~ 2 ~ 2 ( ~ / ~ / ~ / ~ ) q ~ 4 q ~ 5 ~ 6 ~ 7 ( ( ~ / ~  - -  / ~ ) ( ~ / ~  - -  / ~ ) ]  ( 2 9 a )  

It is also possible to introduce a second spin pairing, 

7~2 o = ~4[~b ~b~q532(e/~e/~/~)4~4~b6q55qSy(e/~ -/~e)(e/3 -/~e)] (29b) 

where the valence orbitals on oxygen are spin-coupled together and the valence 
orbitals of the two hydrogen atoms are spin-coupled together. However, there is 
much in favour of an interpretation based on a single spin-coupling [42-44] and 
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Table 2. Total energies (au) obtained with the 6-31G* basis for the symmetric stretch 
of  H20 ,  R e = 0.9707 A, 0 = 102.807 ° 

347 

E(CASSCF) E(BOVB) E(CASSCF) - E(BOVB) 
R e --75.0626070 --76.0555339 0.0070731 
1.5R e --75.9145492 -75.9080342 0.0065150 
2R e -75.8088049 --75.8005250 0.0082799 

Table 3. Relative energies (kcal m o l - l )  for the symmetric stretch of H 2 0  

E(2Re) - E(1.5Re) E(1.5Re) - E(Re) E(2Re) - E(Re) 
CASSCF 66.36 92.91 159.26 
BOVB 67.46 92.56 160.02 
AE 1.10 0.35 0.76 

the BOVB calculations on the water molecule were performed with the function 
in Eq. (29a) only. The results are shown in Table 2. 

The absolute difference between the BOVB and CASSCF energies is greater 
than for the previous example. The CASSCF wavefunction contains 20 configu- 
rations compared to the single BOVB configuration. The function in Eq. (29b) 
would be expected to have a greater contribution as the molecule dissociates 
since it corresponds to a 'long-bond' structure, but at least as far as 2R e the PP 
approximation is quite valid. Since the total energiesare only a guide to the 
behaviour of a computational model across a whole reaction surface, the relative 
energies of H20 at different points are compared in Table 3. As can be seen, the 
BOVB model performs well when compared with the CASSCF method, given 
the same orbital partitioning. 

4.3. Dioxygen difluoride 

The final example was chosen to illustrate the chemically appealing insights that 
can be obtained from a VB description of bonding which does not contain any 
orthogonality constraints. Dioxygen difluoride (F202) has been discussed from 
the point of view of unrestricted Hartree-Fock (UHF), CASSCF and un- 
restricted natural orbital CAS (UNO-CAS) by Pulay [45]. The calculations 
reported here were carried out using the valence double-zeta Dunning-Huzinaga 
basis [46, 47]. The geometry used [48] is shown in Fig. 1. It should be noted that 

1.575FA~ 10~9,5 ° 
0 1.217 A 

D(FOOF) = 87.5 ° Fig. 1. Equilibrium geometry of F202 (see [45, 48]) 
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a UHF natural orbital analysis shows an occupation of 0.414 for each of the 
O - F  antibonding orbitals with all other virtual orbitals having an occupancy 
< 0.003. However, the eigenvalue of S 2 for this singlet species a t the  UHF level 
is 1.325, the application of a single spin annihilator produces an S 2 eigenvalue of 
2.376! Clearly the UHF description of this molecule is highly questionable. A 
natural orbital analysis based on CASSCF orbitals reduces the occupation of the 
antibonding orbitals to ~0.2. Taking the core/valence partition to be the same 
as in [45], the BOVB procedure was used with the function 

) 1 ~F202 ~___ ~ ~2  (C(fl) ~bl6~bl7~bl8~bl9(Cx/~ - ]~)(5~/~ - ]~o~) (30)  
Lki  = 1 

where ~bl-~bls represent a doubly occupied core and ~16--(~19 describe the two 
O - F  bonds. The BOVB energy obtained was -348.3529991 au compared with 
the CASSCF energy of -348.3562471 au (AE = 0.0032480 au). 

The structure of F202 is unusual from the point of view of the shortness of 
the O - O  bond and the relatively long O - F  bonds. One MO based explanation 
that has been suggested is that each singly occupied rt* orbital of 02 interacts 
with a singly occupied fluorine a orbital to form two O - F  bonds in approxi- 
mately perpendicular planes. The CASSCF valence orbitals are shown schemati- 
cally in Fig. 2a and are notable for the fact that the contribution of each atom 
to each orbital is approximately the same and no simple picture of the bonding 
is obtained. In Fig. 2b the orbitals obtained with the BOVB procedure are 
depicted (again schematically). Given the function in Eq. (30), the bonding is 
clearly exposed to be brought about by the spin pairing of a fluorine valence 
electron with an 02 valence electron. The overlap integral between q~16/~17 and 
4~18/~b19 is 0.497 while that between the largest interpair interaction is only 0.012. 

5. Conclusion 

A simple scheme has been described which enables VB calculations using 
nonorthogonal orbitals to be performed, while avoiding the notorious N! depen- 
dence of the matrix elements. The procedure has been illustrated with some 
model applications and appears to look promising. The current BOVB program 
is being improved to enable a wider range of systems to be studied. Given the 

(~17 

(~19 

Fig. 2. a Schematic illustration of CASSCF valence orbitals of  F202. b schematic illustration of 
BOVB valence orbitals of  F202 
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simplicity of the matrix elements occurring in the energy calculation the whole 
process should be amenable to a 'direct' implementation along the lines of direct 
MCSCF codes which avoid the requirement of large amounts of disk space. 
Furthermore, it is entirely feasible that the pseudospectral methods of Friesner 
[49-54] could be adapted to the evaluation of the required matrix elements, 
leading to substantial simplification in computations. 

Note added in proof 

The BOVB description of F202 is similar to those obtained from localizing the orbitals of a CASSCF 
or FORS type wavefunction. However, it must be stressed that the BOVB orbitals arise uniquely 
from the orbital optimization, whereas the CASSCF/FORS descriptions exploit the invariance of the 
energy to mixing of orbitals in the valence space. 

Acknowledgements. The author thanks Dr. David Cooper for bringing reference 38 to his attention 
and also for some interesting discussions. 
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